Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simple methods to remove microbes from leaf surfaces.

Identifieur interne : 000118 ( Main/Exploration ); précédent : 000117; suivant : 000119

Simple methods to remove microbes from leaf surfaces.

Auteurs : J Paola Saldierna Guzmán [États-Unis] ; Kennedy Nguyen [États-Unis] ; Stephen C. Hart [États-Unis]

Source :

RBID : pubmed:32529642

Abstract

Endophytes have been defined as microorganisms living inside plant tissues without causing negative effects on their hosts. Endophytic microbes have been extensively studied for their plant growth-promoting traits. However, analyses of endophytes require complete removal of epiphytic microorganisms. We found that the established tests to evaluate surface sterility, polymerase chain reaction, and leaf imprints, are unreliable. Therefore, we used scanning electron microscopy (SEM) as an additional assessment of epiphyte removal. We used a diverse suite of sterilization protocols to remove epiphytic microorganisms from the leaves of a gymnosperm and an angiosperm tree to test the influence of leaf morphology on the efficacy of these methods. Additionally, leaf tissue damage was also evaluated by SEM, as damaging the leaves might have an impact on endophytes and could lead to inaccurate assessment of endophytic communities. Our study indicates, that complete removal of the leaf cuticle by the sterilization technique assures loss of epiphytic microbes, and that leaves of different tree species may require different sterilization protocols. Furthermore, our study demonstrates the importance of choosing the appropriate sterilization protocol to prevent erroneous interpretation of host-endophyte interactions. Moreover, it shows the utility of SEM for evaluating the effectiveness of surface sterilization methods and their impact on leaf tissue integrity.

DOI: 10.1002/jobm.202000035
PubMed: 32529642


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simple methods to remove microbes from leaf surfaces.</title>
<author>
<name sortKey="Saldierna Guzman, J Paola" sort="Saldierna Guzman, J Paola" uniqKey="Saldierna Guzman J" first="J Paola" last="Saldierna Guzmán">J Paola Saldierna Guzmán</name>
<affiliation wicri:level="2">
<nlm:affiliation>Quantitative and Systems Biology, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Quantitative and Systems Biology, University of California, Merced</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Sierra Nevada Research Institute, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Sierra Nevada Research Institute, University of California, Merced</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Kennedy" sort="Nguyen, Kennedy" uniqKey="Nguyen K" first="Kennedy" last="Nguyen">Kennedy Nguyen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Imaging and Microscopy Facility, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Imaging and Microscopy Facility, University of California, Merced</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hart, Stephen C" sort="Hart, Stephen C" uniqKey="Hart S" first="Stephen C" last="Hart">Stephen C. Hart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Quantitative and Systems Biology, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Quantitative and Systems Biology, University of California, Merced</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Sierra Nevada Research Institute, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Sierra Nevada Research Institute, University of California, Merced</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Life and Environmental Sciences, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Life and Environmental Sciences, University of California, Merced</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32529642</idno>
<idno type="pmid">32529642</idno>
<idno type="doi">10.1002/jobm.202000035</idno>
<idno type="wicri:Area/Main/Corpus">000254</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000254</idno>
<idno type="wicri:Area/Main/Curation">000254</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000254</idno>
<idno type="wicri:Area/Main/Exploration">000254</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Simple methods to remove microbes from leaf surfaces.</title>
<author>
<name sortKey="Saldierna Guzman, J Paola" sort="Saldierna Guzman, J Paola" uniqKey="Saldierna Guzman J" first="J Paola" last="Saldierna Guzmán">J Paola Saldierna Guzmán</name>
<affiliation wicri:level="2">
<nlm:affiliation>Quantitative and Systems Biology, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Quantitative and Systems Biology, University of California, Merced</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Sierra Nevada Research Institute, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Sierra Nevada Research Institute, University of California, Merced</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Kennedy" sort="Nguyen, Kennedy" uniqKey="Nguyen K" first="Kennedy" last="Nguyen">Kennedy Nguyen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Imaging and Microscopy Facility, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Imaging and Microscopy Facility, University of California, Merced</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hart, Stephen C" sort="Hart, Stephen C" uniqKey="Hart S" first="Stephen C" last="Hart">Stephen C. Hart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Quantitative and Systems Biology, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Quantitative and Systems Biology, University of California, Merced</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Sierra Nevada Research Institute, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Sierra Nevada Research Institute, University of California, Merced</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Life and Environmental Sciences, University of California, Merced, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Life and Environmental Sciences, University of California, Merced</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of basic microbiology</title>
<idno type="eISSN">1521-4028</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Endophytes have been defined as microorganisms living inside plant tissues without causing negative effects on their hosts. Endophytic microbes have been extensively studied for their plant growth-promoting traits. However, analyses of endophytes require complete removal of epiphytic microorganisms. We found that the established tests to evaluate surface sterility, polymerase chain reaction, and leaf imprints, are unreliable. Therefore, we used scanning electron microscopy (SEM) as an additional assessment of epiphyte removal. We used a diverse suite of sterilization protocols to remove epiphytic microorganisms from the leaves of a gymnosperm and an angiosperm tree to test the influence of leaf morphology on the efficacy of these methods. Additionally, leaf tissue damage was also evaluated by SEM, as damaging the leaves might have an impact on endophytes and could lead to inaccurate assessment of endophytic communities. Our study indicates, that complete removal of the leaf cuticle by the sterilization technique assures loss of epiphytic microbes, and that leaves of different tree species may require different sterilization protocols. Furthermore, our study demonstrates the importance of choosing the appropriate sterilization protocol to prevent erroneous interpretation of host-endophyte interactions. Moreover, it shows the utility of SEM for evaluating the effectiveness of surface sterilization methods and their impact on leaf tissue integrity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32529642</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1521-4028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>60</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of basic microbiology</Title>
<ISOAbbreviation>J Basic Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Simple methods to remove microbes from leaf surfaces.</ArticleTitle>
<Pagination>
<MedlinePgn>730-734</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jobm.202000035</ELocationID>
<Abstract>
<AbstractText>Endophytes have been defined as microorganisms living inside plant tissues without causing negative effects on their hosts. Endophytic microbes have been extensively studied for their plant growth-promoting traits. However, analyses of endophytes require complete removal of epiphytic microorganisms. We found that the established tests to evaluate surface sterility, polymerase chain reaction, and leaf imprints, are unreliable. Therefore, we used scanning electron microscopy (SEM) as an additional assessment of epiphyte removal. We used a diverse suite of sterilization protocols to remove epiphytic microorganisms from the leaves of a gymnosperm and an angiosperm tree to test the influence of leaf morphology on the efficacy of these methods. Additionally, leaf tissue damage was also evaluated by SEM, as damaging the leaves might have an impact on endophytes and could lead to inaccurate assessment of endophytic communities. Our study indicates, that complete removal of the leaf cuticle by the sterilization technique assures loss of epiphytic microbes, and that leaves of different tree species may require different sterilization protocols. Furthermore, our study demonstrates the importance of choosing the appropriate sterilization protocol to prevent erroneous interpretation of host-endophyte interactions. Moreover, it shows the utility of SEM for evaluating the effectiveness of surface sterilization methods and their impact on leaf tissue integrity.</AbstractText>
<CopyrightInformation>© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saldierna Guzmán</LastName>
<ForeName>J Paola</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1728-8154</Identifier>
<AffiliationInfo>
<Affiliation>Quantitative and Systems Biology, University of California, Merced, California.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Sierra Nevada Research Institute, University of California, Merced, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>Kennedy</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Imaging and Microscopy Facility, University of California, Merced, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hart</LastName>
<ForeName>Stephen C</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Quantitative and Systems Biology, University of California, Merced, California.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Sierra Nevada Research Institute, University of California, Merced, California.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Life and Environmental Sciences, University of California, Merced, California.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NNX15AQ01A</GrantID>
<Agency>NASA MIRO</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>UC MEXUS-CONACYT Doctoral Fellowship</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Basic Microbiol</MedlineTA>
<NlmUniqueID>8503885</NlmUniqueID>
<ISSNLinking>0233-111X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Pinus contorta</Keyword>
<Keyword MajorTopicYN="N">Populus fremontii</Keyword>
<Keyword MajorTopicYN="N">endophyte</Keyword>
<Keyword MajorTopicYN="N">leaf surface sterilization</Keyword>
<Keyword MajorTopicYN="N">scanning electron microscopy (SEM)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32529642</ArticleId>
<ArticleId IdType="doi">10.1002/jobm.202000035</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos. 1995;73:274-6.</Citation>
</Reference>
<Reference>
<Citation>Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43:895-914.</Citation>
</Reference>
<Reference>
<Citation>Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293-320.</Citation>
</Reference>
<Reference>
<Citation>Li F, He X, Sun Y, Zhang X, Tang X, Li Y, et al. Distinct endophytes are used by diverse plants for adaptation to karst regions. Sci Rep. 2019;9:5246.</Citation>
</Reference>
<Reference>
<Citation>Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018;175:973-83.</Citation>
</Reference>
<Reference>
<Citation>Maggini V, de Leo M, Mengoni A, Gallo ER, Miceli E, Reidel RVB, et al. Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model. Sci Rep. 2017;7(1):16924.</Citation>
</Reference>
<Reference>
<Citation>Tan X, Zhou Y, Zhou X, Xia X, Wei Y, He L, et al. Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci Rep. 2018;8:5929.</Citation>
</Reference>
<Reference>
<Citation>Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature. 2017;543:513-8.</Citation>
</Reference>
<Reference>
<Citation>Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol. 2016;14:e1002352.</Citation>
</Reference>
<Reference>
<Citation>Padda KP, Puri A, Chanway CP. Isolation and identification of endophytic diazotrophs from lodgepole pine trees growing at unreclaimed gravel mining pits in central interior British Columbia, Canada. Can J For Res. 2018;48:1601-6.</Citation>
</Reference>
<Reference>
<Citation>Gao JL, Lv FY, Wang XM, Li JW, Wu QY, Sun JG. Flavobacterium endophyticum sp. nov., a nifH gene-harbouring endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol. 2015;65:3900-4.</Citation>
</Reference>
<Reference>
<Citation>Carrell AA, Carper DL, Frank AC. Subalpine conifers in different geographical locations host highly similar foliar bacterial endophyte communities. FEMS Microbiol Ecol. 2016;928. https://doi.org/10.1093/femsec/fiw124</Citation>
</Reference>
<Reference>
<Citation>Manter DK, Delgado JA, Holm DG, Stong RA. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol. 2010;60:157-66.</Citation>
</Reference>
<Reference>
<Citation>Ulrich K, Ulrich A, Ewald D. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol. 2008;63:169-80.</Citation>
</Reference>
<Reference>
<Citation>Shi Y, Zhang X, Lou K. Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians. J Insect Sci. 2013;13:151.</Citation>
</Reference>
<Reference>
<Citation>Zhao S, Zhou N, Zhao ZY, Zhang K, Tian CY. High-throughput sequencing analysis of the endophytic bacterial diversity and dynamics in roots of the halophyte Salicornia europaea. Curr Microbiol. 2016;72:557-62.</Citation>
</Reference>
<Reference>
<Citation>Carper DL, Carrell AA, Kueppers LM, Frank AC. Bacterial endophyte communities in Pinus flexilis are structured by host age, tissue type, and environmental factors. Plant Soil. 2018;428:335-52.</Citation>
</Reference>
<Reference>
<Citation>Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JWL, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol. 2002;68:4906-14.</Citation>
</Reference>
<Reference>
<Citation>Rúa MA, Wilson EC, Steele S, Munters AR, Hoeksema JD, Frank AC. Associations between ectomycorrhizal fungi and bacterial needle endophytes in Pinus radiata: Implications for biotic selection of microbial communities. Front Microbiol. 2016;7:399.</Citation>
</Reference>
<Reference>
<Citation>Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O'Neil J, et al. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol. 2016;210:657-68.</Citation>
</Reference>
<Reference>
<Citation>Peng A, Liu J, Ling W, Chen Z, Gao Y. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites. Sci Rep. 2015;5:12173.</Citation>
</Reference>
<Reference>
<Citation>Pandey SS, Singh S, Babu CSV, Shanker K, Srivastava NK, Shukla AK, et al. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep. 2016;6:26583.</Citation>
</Reference>
<Reference>
<Citation>Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol. 2008;55:415-24.</Citation>
</Reference>
<Reference>
<Citation>Correa-Galeote D, Bedmar EJ, Arone GJ. Maize endophytic bacterial diversity as affected by soil cultivation history. Front Microbiol. 2018;9:484.</Citation>
</Reference>
<Reference>
<Citation>Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86-90.</Citation>
</Reference>
<Reference>
<Citation>Turner S, Pryer KM, Miao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999;46:327-38.</Citation>
</Reference>
<Reference>
<Citation>Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York, NY: John Wiley and Sons; 1991. p. 115-75.</Citation>
</Reference>
<Reference>
<Citation>Ren F, Dong W, Yan DH. Endophytic bacterial communities of Jingbai pear trees in north China analyzed with Illumina sequencing of 16S rDNA. Arch Microbiol. 2019;201:199-208.</Citation>
</Reference>
<Reference>
<Citation>Dunlap M, Adaskaveg JE. Introduction to the scanning electron microscope: Theory, practice, & procedures. Facility for advanced instrumentation. Sacramento, CA: University of California, Davis; 1997. p. 1-51.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Saldierna Guzman, J Paola" sort="Saldierna Guzman, J Paola" uniqKey="Saldierna Guzman J" first="J Paola" last="Saldierna Guzmán">J Paola Saldierna Guzmán</name>
</region>
<name sortKey="Hart, Stephen C" sort="Hart, Stephen C" uniqKey="Hart S" first="Stephen C" last="Hart">Stephen C. Hart</name>
<name sortKey="Hart, Stephen C" sort="Hart, Stephen C" uniqKey="Hart S" first="Stephen C" last="Hart">Stephen C. Hart</name>
<name sortKey="Hart, Stephen C" sort="Hart, Stephen C" uniqKey="Hart S" first="Stephen C" last="Hart">Stephen C. Hart</name>
<name sortKey="Nguyen, Kennedy" sort="Nguyen, Kennedy" uniqKey="Nguyen K" first="Kennedy" last="Nguyen">Kennedy Nguyen</name>
<name sortKey="Saldierna Guzman, J Paola" sort="Saldierna Guzman, J Paola" uniqKey="Saldierna Guzman J" first="J Paola" last="Saldierna Guzmán">J Paola Saldierna Guzmán</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000118 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000118 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32529642
   |texte=   Simple methods to remove microbes from leaf surfaces.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32529642" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020